
[1958]

166. The Oxidation of Derivatives of o-Phenylenediamine. Part V.¹ N³-Substituted Derivatives of Anilinoaposafranine (Rimino-compounds) and Related Compounds.

By VINCENT C. BARRY, J. G. BELTON, J. F. O'SULLIVAN, and DERMOT TWOMEY.

Catalytic hydrogenation of glyoxalinophenazines ¹ yields N^3 -substituted derivatives of anilino*apo*safranines (rimino-compounds) and not N^2 -substituted derivatives as stated earlier.¹ Some of these compounds, and others not accessible by the glyoxalinophenazine route, have been prepared by reaction of primary amines with anilino*apo*safranines. Similar compounds have also been obtained by condensation of isomers ² of anilino*apo*safranines with some primary amines and by condensation of 4:5-diarylamino-*o*-quinones with *o*-phenylenediamines.³

WE have described in Part IV¹ the hydrogenation of dihydrogloxalinophenazines (I) which resulted in the opening of the glyoxaline ring and formation of derivatives to which we assigned structure (II). The presence of =NH in these compounds was suggested by their relative instability in boiling acetic anhydride and the appearance of a sharp band at 3300 cm.⁻¹ in the infrared region. Further examination of the infrared spectra of these and related compounds has shown that this band is due to an $-NH^-$ group. Again, deductions based on the results of bromination of these compounds are now known to be of doubtful validity, as a continuing investigation of the bromination of a variety of related phenazines has shown the situation to be very complex. It is now clear that formula (II) does not represent the structure of these "rimino-compounds" and that hydrogenation results in the opening of the 1': 2'-bond of the glyoxalino-ring giving

compounds of structure (III). We have also shown that compound (III; R = Ph, $R'' = Pr^i$) may be recyclised to the glyoxalino-compound (I; R = Ph, R' = R'' = Me) by heating it in nitrobenzene under reflux. Identical compounds (III) have been obtained by treating anilino*apo*safranine with appropriate primary alkyl- and *cycloalkyl-amines*. For example, compound (III; R = Ph, $R'' = Pr^i$) has been obtained from the glyoxalino-compound (I; R = Ph, R' = R'' = Me) and also by heating anilino*apo*safranine with *iso*propylamine.

Further, heating anilino *aposafranine* (IV; R = Ph) with aniline yields the compound

¹ Part IV, Barry, Belton, O'Sullivan, and Twomey, J., 1956, 3347.

- ² Idem, J., 1956, 896.
- ³ Kehrmann and Cordone, Ber., 1913, 46, 3009.

859

(III; R = R''' = Ph) which has been synthesised unambiguously by condensation of the amine (VI; R = Ph) with the quinone imine (VII; R = Ph). By analogy, therefore, it may be concluded that primary amines react with anilino*ap*osafranines replacing the =NH by =NR. The absence of the =NH group from the substituted compounds (III) is also supported by their failure to react with 1-fluoro-2: 4-dinitrobenzene.

Compound (III; R = R'' = Ph) has also been obtained by treating glyoxalinocompounds (I; R = Ph, R' = R'' = Me; and R = Ph, CR'R'' = cyclohexane) with aniline under reflux, and under similar conditions from the substituted imines (III; R''' = alkyl or cycloalkyl). It has also been obtained by refluxing the isomer (V; R = Ph) of anilino*aposafranine* with aniline, and thus this compound has now been made by five methods.

Certain substituted imines, e.g., (III; R = Ph, R''' = Me), not accessible by the glyoxaline route, have been prepared by reaction of anilino*aposafranines* (IV) with primary aliphatic amines. The compound (III; R = Ph, R''' = Me) was also obtained by direct alkylation of compound (IV; R = Ph). Phenethylamine reacted as expected with anilino*aposafranine*. On the other hand, benzylamine gave a product which did not have the properties expected for compound (III; R = Ph, $R''' = CH_2Ph$): this product was unstable, showed a bright green fluorescence, had unique colour reactions, and failed to yield a crystalline material on hydrogenation; the analytical data fit the requirements of either the substituted imine or the glyoxalino-compound.

Compound (III; R = Ph, $R''' = CH_2 \cdot OH$) is readily obtained by warming gently an ethanolic solution of anilino*apo*safranine (IV; R = Ph) with formaldehyde; it is unstable and decomposes in warm ethanol.

The reaction of anilino*apo*safranines (IV) with primary aromatic amines yielded some unexpected results. Thus, while heating compound (IV; R = Ph) with aniline or *p*-chloroaniline yielded the substituted imines (III; R = Ph, R''' = Ph or $p-C_6H_4Cl$), the compound (IV; $R = p-C_6H_4Cl$) on treatment with aniline gave a product which, although melting sharply and behaving on an alumina column as a single substance, is shown by analytical data to be a mixture of mono- and di-chlorinated derivatives of structure

TABLE 1.	5:1':2':2'-Substituted	5 : 2'-dihydroglyoxalino(5'	: 4'-2: 3) phenazines (I).

	Found (%)					Required (%)				
CR'R″	M. p.*	С	Н	N	Cl	Formula	С	Ĥ	N	C1
Compounds where $\mathbf{R}=$										
CMe·CH ₂ ·CO·NEt ₂		$76 \cdot 1$	$6 \cdot 2$	14.0	_	$C_{32}H_{31}ON_5$	76.6	6.4	14.0	
CMe·CH ₂ ·COMe	174 - 175	78.4	5.5	12.3		$C_{29}H_{24}ON_4$	78.4	5.4	12.6	
cycloHeptane	296 - 297	81.6	$6 \cdot 2$	12.3		$C_{31}H_{28}N_4$	81.6	$6 \cdot 1$	12.3	
4-Methylcyclohexane	317 - 318	81.5	$6 \cdot 4$	$12 \cdot 2$		$C_{31}H_{28}N_4$				
3: 5-Dimethylcyclo-										
hexane	288 - 289	81.7	6.5	11.9		$C_{32}H_{30}N_4$	81.7	6.4	11.9	
Compounds where $R = p - C_6 H_4 Cl$.										
CMeEt	174 - 176	69.5	4.7	11.7	14.5	C ₂₈ H ₂₂ N ₄ Cl ₂	69.3	$4 \cdot 5$	11.5	14.6
CEt ₂	179 - 181	69.9	$4 \cdot 9$	11.4	14.4	C ₂ H ₂ N ₄ Cl ₂	69.7	4 ·8	11.2	14.2
cycloHeptane	290 - 292	71.0	$5 \cdot 0$	10.4	13.7	C ₃₁ H ₂₆ N ₄ Cl ₂	70.9	$5 \cdot 0$	10.7	13.5
4-Methylcyclohexane	277 - 279	70.8	4.7	10.7	13.6	$C_{31}H_{26}N_4Cl_2$				
3:5-Dimethylcyclo-						01 20 4 2				
hexane	267 - 269	71.0	$5 \cdot 2$	10.6	13.5	$C_{32}H_{28}N_4Cl_2$	71.2	$5 \cdot 2$	10.4	$13 \cdot 2$
Compound where $R = o-C_{g}H_{4}Cl$.										
СМе ₂	217 - 218	68.6	$4 \cdot 2$	11.9	14·8	$\mathrm{C_{27}H_{20}N_4Cl_2}$	68.8	$4 \cdot 2$	11.9	$15 \cdot 1$

* All the compounds in this Table were recrystallised from benzene.

(VIII; $R = R'' = p - C_6 H_4 Cl$, R' = Ph; and $R = p - C_6 H_4 Cl$, R' = R'' = Ph). This indicates that the *p*-chloroaniline residue in the 2-position is to some extent replaceable by aniline under these conditions.

A similar result was obtained with the isomers (V) of anilino*aposafranines*. Compound (V; R = Ph) on treatment with aniline gave compound (III; R = R'' = Ph) in high

TABLE 2. N³-Substituted anilinoaposafranine derivatives (III).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} Compounds \ where \ {\bf R} = {\bf Ph}. \\ \hline {\bf Me} \ \dots \ {\bf R} \ {\bf Me} \ {\bf Me} \ {\bf R} = {\bf R} \ {\bf R} \$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \text{Et} \dots & 182 - 183 & 79\cdot8 & 5\cdot8 & 13\cdot9 & - & C_{36}^{2} H_{22}^{2} N_{4} & 80\cdot0 & 5\cdot6 & 14\cdot4 & - \\ Pr^{a} \dots & 173 - 175 & 80\cdot2 & 5\cdot9 & 13\cdot9 & - & C_{37}^{2} H_{22}^{a} N_{4} & 80\cdot2 & 5\cdot9 & 13\cdot9 & - \\ Bu^{a} & \dots & 147 - 149 & 80\cdot2 & 6\cdot5 & 13\cdot5 & - & C_{38}^{2} H_{28}^{a} N_{4} \\ Bu^{4} & \dots & 189 - 190 & 80\cdot3 & 6\cdot0 & 13\cdot5 & - & C_{38}^{2} H_{28}^{a} N_{4} \\ Bu^{4} & \dots & 189 - 190 & 80\cdot3 & 6\cdot0 & 13\cdot5 & - & C_{38}^{2} H_{28}^{a} N_{4} \\ - & - C_{2}H_{11} \dots & 143 - 145 & 80\cdot4 & 6\cdot5 & 13\cdot3 & - & C_{2}^{2} H_{28}^{a} N_{4} & 80\cdot6 & 6\cdot5 & 13\cdot0 & - \\ n^{a} - C_{3}H_{11} \dots & 143 - 145 & 80\cdot4 & 6\cdot5 & 13\cdot3 & - & C_{28}^{a} H_{28}^{a} N_{4} & 80\cdot6 & 6\cdot5 & 13\cdot0 & - \\ n^{a} - C_{1}H_{15} \dots & 130 - 131 & 80\cdot8 & 6\cdot7 & 12\cdot2 & - & C_{31}^{-1} H_{38}^{a} N_{4} & 81\cdot2 & 7\cdot4 & - & - \\ n^{a} - C_{1}H_{12} \dots \dots & 92 - 94 & 81\cdot1 & 7\cdot8 & 11\cdot2 & - & C_{34}^{a} H_{38}^{a} N_{4} & 81\cdot3 & 7\cdot6 & 11\cdot2 & - \\ n^{a} - C_{12}H_{25} \dots & 95 - 96 & 81\cdot1 & 8\cdot0 & 10\cdot3 & - & C_{36}^{a} H_{48}^{a} N_{4} & 81\cdot5 & 7\cdot9 & 10\cdot6 & - \\ 3 \cdot 5 - \text{Dimethylcyclohexyl} & 202 - 204 & 81\cdot0 & 6\cdot7 & 11\cdot8 & - & C_{32}^{a} H_{30}^{a} N_{4} & 81\cdot5 & 7\cdot9 & 10\cdot6 & - \\ n^{a} - C_{14}^{a} - D_{11} & 191 - 192 & 81\cdot1 & 6\cdot6 & 12\cdot0 & - & C_{31}^{a} H_{30}^{a} N_{4} & 81\cdot2 & 6\cdot6 & 12\cdot2 & - \\ c'H_{2}^{c} OH & 179 - 180 & 76\cdot6 & 5\cdot3 & 13\cdot9 & - & C_{32}^{a} H_{30}^{a} N_{4} & 81\cdot2 & 6\cdot6 & 12\cdot2 & - \\ CH_{2}^{a} OH & 179 - 180 & 76\cdot6 & 5\cdot3 & 14\cdot0 & - & C_{32}^{a} H_{30}^{a} N_{4} & 82\cdot4 & 5\cdot6 & 12\cdot0 & - \\ CH_{2}^{a} CH_{2}^{a} OH & 179 - 180 & 76\cdot6 & 5\cdot3 & 14\cdot0 & - & C_{32}^{a} H_{30}^{a} N_{4} & 82\cdot4 & 5\cdot6 & 12\cdot0 & - \\ CH_{2}^{a} CH_{2}^{a} OH & 179 - 180 & 76\cdot6 & 5\cdot3 & 14\cdot0 & - & C_{32}^{a} H_{30}^{a} N_{4} & 82\cdot4 & 5\cdot6 & 12\cdot0 & - \\ CH_{2}^{a} CH_{2}^{a} OH & 179 - 180 & 76\cdot6 & 5\cdot3 & 14\cdot0 & - & C_{32}^{a} H_{30}^{a} N_{4} & 82\cdot4 & 5\cdot6 & 12\cdot0 & - \\ P^{a} C_{4}^{a} CH_{2}^{a} OH & 179 - 180 & 76\cdot6 & 5\cdot3 & 14\cdot0 & - & C_{32}^{a} H_{30}^{a} N_{4} & 82\cdot4 & 5\cdot6 & 12\cdot0 & - \\ P^{a} C_{4}^{a} CH_{2}^{a} OH & 199 - 125 & 66\cdot0 & 4\cdot1 & 12\cdot0 & 15\cdot4 & C_{32}^{a} H_{30}^{a} N_{4} & 12\cdot2 & $
$ \begin{array}{c} \Pr^n & \dots & 173 - 175 & 80 \cdot 2 & 5 \cdot 9 & 13 \cdot 9 & C_{22}^{**} H_{22}^{**} N_4 & 80 \cdot 2 & 5 \cdot 9 & 13 \cdot 9 & \dots \\ \operatorname{Bu}^n & \dots & 147 - 149 & 80 \cdot 2 & 6 \cdot 5 & 13 \cdot 5 & \dots & \operatorname{CggH_2gN_4} \\ \operatorname{Bu}^1 & \dots & 160 - 161 & 80 \cdot 6 & 6 \cdot 4 & 13 \cdot 4 & \dots & \operatorname{CggH_2gN_4} \\ \operatorname{Bu}^1 & \dots & 189 - 190 & 80 \cdot 3 & 6 \cdot 0 & 13 \cdot 5 & \dots & \operatorname{CggH_2gN_4} \\ \operatorname{Bu}^1 & \dots & 143 - 145 & 80 \cdot 4 & 6 \cdot 5 & 13 \cdot 3 & \dots & \operatorname{CggH_2gN_4} \\ \operatorname{Bu}^1 & \dots & 143 - 145 & 80 \cdot 4 & 6 \cdot 5 & 13 \cdot 3 & \dots & \operatorname{CggH_2gN_4} \\ \operatorname{Bu}^1 & \dots & 143 - 145 & 80 \cdot 4 & 6 \cdot 5 & 13 \cdot 3 & \dots & \operatorname{CggH_2gN_4} & 80 \cdot 6 & 6 \cdot 5 & 13 \cdot 0 & \dots \\ \operatorname{A}^- \operatorname{CgH_{15}} & \dots & 130 - 131 & 80 \cdot 8 & 6 \cdot 7 & 12 \cdot 2 & \dots & \operatorname{CggH_2gN_4} & 81 \cdot 2 & 7 \cdot 4 & \dots & \dots \\ \operatorname{A}^- \operatorname{CgH_2g} & \dots & 92 - 94 & 81 \cdot 1 & 7 \cdot 8 & 11 \cdot 2 & \dots & \operatorname{CggH_2gN_4} & 81 \cdot 3 & 7 \cdot 6 & 11 \cdot 2 & \dots \\ \operatorname{A}^- \operatorname{CgH_2g} & \dots & 92 - 94 & 81 \cdot 1 & 7 \cdot 8 & 11 \cdot 2 & \dots & \operatorname{CggH_2gN_4} & 81 \cdot 3 & 7 \cdot 6 & 11 \cdot 2 & \dots \\ \operatorname{A}^- \operatorname{CgH_2g} & \dots & 92 - 94 & 81 \cdot 0 & 6 \cdot 7 & 11 \cdot 8 & \dots & \operatorname{CggH_2gN_4} & 81 \cdot 3 & 7 \cdot 6 & 11 \cdot 2 & \dots \\ \operatorname{A}^- \operatorname{CgH_2g} & \dots & 92 - 94 & 81 \cdot 0 & 6 \cdot 5 & 12 \cdot 1 & \dots & \operatorname{CggH_2gN_4} & 81 \cdot 3 & 6 \cdot 8 & 11 \cdot 9 & \dots \\ \operatorname{A}^- \operatorname{CgH_2g} & \dots & 92 - 94 & 81 \cdot 0 & 6 \cdot 5 & 12 \cdot 1 & \dots & \operatorname{CggH_2gN_4} & 81 \cdot 3 & 6 \cdot 8 & 11 \cdot 9 & \dots \\ \operatorname{A}^- \operatorname{CgH_2g} & \dots & 154 - 156 & 76 \cdot 5 & 5 \cdot 3 & 13 \cdot 9 & \dots & \operatorname{CgH_2gN_4} & 81 \cdot 2 & 6 \cdot 6 & 12 \cdot 2 & \dots \\ \operatorname{CycloHeptyl} & 191 - 192 & 81 \cdot 1 & 6 \cdot 6 & 12 \cdot 0 & \dots & \operatorname{CggH_2gN_4} & 81 \cdot 2 & 6 \cdot 6 & 12 \cdot 2 & \dots \\ \operatorname{CH_2}^- \operatorname{CH_2}^- \operatorname{OH} & \dots & 154 - 156 & 76 \cdot 5 & 5 \cdot 3 & 13 \cdot 9 & \dots & \operatorname{CggH_2gN_4} & 76 \cdot 8 & 5 \cdot 4 & 13 \cdot 8 & \dots \\ \operatorname{CH_2}^- \operatorname{CH_2}^- \operatorname{OH} & \dots & 166 - 168 & 82 \cdot 2 & 5 \cdot 6 & 12 \cdot 1 & \dots & \operatorname{CggH_2gN_4} & 82 \cdot 4 & 5 \cdot 6 & 12 \cdot 0 & \dots \\ \operatorname{CH_2}^- \operatorname{CH_2}^- \operatorname{OH} & \dots & 166 - 168 & 82 \cdot 2 & 5 \cdot 6 & 12 \cdot 1 & \dots & \operatorname{CggH_2gN_4} & 22 & 6 \cdot 5 & 12 \cdot 0 & \dots \\ \operatorname{CgH_2}^- \operatorname{CgH_4}^- & \dots & 123 - 237 & 76 \cdot 6 & 4 \cdot 4 & 11 \cdot 6 & 7 \cdot 8 & \operatorname{CggH_2gN_4} & \operatorname{Cl_2} & 6 \cdot 4 & 4 \cdot 4 & 12 \cdot 2 & 15 \cdot 5 \\ \operatorname{Pr}^n & \dots & 193 - 195 & 68 \cdot 4 & 4 \cdot 7 & 11 \cdot 9 & 15 \cdot 0 & \operatorname{CggH_2gN_4} & \operatorname{Cl_2} & 6 \cdot 6 & 4 \cdot 4 & 12 \cdot 2 $
$ \begin{array}{c} Bu^{a} & \dots & 147-149 & 80\cdot 2 & 6\cdot 5 & 13\cdot 5 & \dots & C_{28}^{a}H_{26}^{a}N_{4} \\ Bu^{1} & \dots & 160-161 & 80\cdot 6 & 6\cdot 4 & 13\cdot 4 & \dots & C_{28}H_{28}N_{4} \\ Bu^{1} & \dots & 189-190 & 80\cdot 3 & 6\cdot 0 & 13\cdot 5 & \dots & C_{28}H_{28}N_{4} \\ Bu^{1} & \dots & 143-145 & 80\cdot 4 & 6\cdot 5 & 13\cdot 3 & \dots & C_{28}H_{28}N_{4} \\ Bu^{2} & \dots & 130-131 & 80\cdot 8 & 6\cdot 7 & 12\cdot 2 & \dots & C_{31}H_{28}N_{4} & 80\cdot 6 & 6\cdot 5 & 13\cdot 0 & \dots \\ n^{a}-C_{1}H_{12} & \dots & 130-131 & 80\cdot 8 & 6\cdot 7 & 12\cdot 2 & \dots & C_{31}H_{38}N_{4} & 81\cdot 2 & 7\cdot 4 & \dots & \dots \\ n^{a}-C_{10}H_{21} & \dots & 92-94 & 81\cdot 1 & 7\cdot 8 & 11\cdot 2 & \dots & C_{33}H_{36}N_{4} & 81\cdot 2 & 7\cdot 4 & \dots & \dots \\ n^{a}-C_{12}H_{22} & \dots & 95-96 & 81\cdot 1 & 8\cdot 0 & 10\cdot 3 & \dots & C_{28}H_{48}N_{4} & 81\cdot 5 & 7\cdot 9 & 10\cdot 6 & \dots \\ n^{a}-C_{12}H_{23} & \dots & 95-96 & 81\cdot 1 & 8\cdot 0 & 10\cdot 3 & \dots & C_{28}H_{48}N_{4} & 81\cdot 5 & 7\cdot 9 & 10\cdot 6 & \dots \\ n^{a}-C_{12}H_{23} & \dots & 95-96 & 81\cdot 1 & 8\cdot 0 & 10\cdot 3 & \dots & C_{28}H_{28}N_{4} & 81\cdot 3 & 6\cdot 8 & 11\cdot 9 & \dots \\ n^{a}-C_{12}H_{23} & \dots & 95-96 & 81\cdot 1 & 8\cdot 0 & 10\cdot 3 & \dots & C_{28}H_{28}N_{4} & 81\cdot 3 & 6\cdot 8 & 11\cdot 9 & \dots \\ n^{a}-C_{12}H_{23} & \dots & 95-96 & 81\cdot 1 & 8\cdot 0 & 10\cdot 3 & \dots & C_{28}H_{28}N_{4} & 81\cdot 3 & 6\cdot 8 & 11\cdot 9 & \dots \\ n^{a}-C_{12}H_{23} & \dots & 15-17 & 17\cdot 81\cdot 0 & 6\cdot 5 & 12\cdot 1 & \dots & C_{28}H_{28}N_{4} & 81\cdot 3 & 6\cdot 8 & 11\cdot 9 & \dots \\ n^{a}-C_{12}C_{12}H_{2}OH & \dots & 154-156 & 76\cdot 5 & 5\cdot 3 & 13\cdot 9 & \dots & C_{28}H_{28}ON_{4} & 76\cdot 5 & 5\cdot 1 & 14\cdot 3 & \dots \\ n^{a}-CH_{2}-CH_{2}OH & \dots & 154-156 & 76\cdot 5 & 7\cdot 1 & 14\cdot 4 & \dots & C_{28}H_{28}ON_{4} & 76\cdot 5 & 5\cdot 1 & 14\cdot 3 & \dots \\ n^{a}-CH_{2}-CH_{2}OH & \dots & 157-177 & 6\cdot 7 & 14\cdot 4 & \dots & C_{28}H_{28}ON_{4} & 76\cdot 5 & 5\cdot 1 & 14\cdot 3 & \dots \\ n^{a}-CH_{2}-CH_{2}Ph & \dots & 166-168 & 82\cdot 2 & 5\cdot 6 & 12\cdot 1 & \dots & C_{28}H_{28}ON_{4} & 76\cdot 5 & 5\cdot 1 & 14\cdot 3 & \dots \\ n^{a}-CH_{2}-CH_{2}Ph & \dots & 166-168 & 82\cdot 2 & 5\cdot 6 & 12\cdot 1 & \dots & C_{28}H_{28}ON_{4}CL_{2} & 68\cdot 6 & 4\cdot 4 & 12\cdot 2 & 15\cdot 5 \\ n^{a}-Cm^{a}-M^{a}-$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} \mathrm{Bu}^4 & \dots & 189 - 190 \\ \mathrm{a-C_5H_{11}} & \dots & 143 - 145 \\ \mathrm{a-C_5H_{11}} & \dots & 130 - 131 \\ \mathrm{a-C_7H_{15}} & \mathrm{sot} & 6 \cdot 5 \\ \mathrm{13:3} & - \\ \mathrm{c-C_{1H_{25}}} & \mathrm{c-C_{3H_{25}}N_4} \\ \mathrm{a-C_5H_{11}} & \mathrm{a-C_{13}} & \mathrm{a-C_{23}} \\ \mathrm{a-C_5H_{15}} & \mathrm{a-C_{23}} & \mathrm{a-C_{23}} \\ \mathrm{a-C_{5}} & \mathrm{a-C_{23}} & \mathrm{a-C_{23}} \\ \mathrm{a-C_{10}} & \mathrm{a-C_{23}} & \mathrm{a-C_{23}} \\ \mathrm{a-C_{10}} & \mathrm{a-C_{23}} & \mathrm{a-C_{23}} \\ \mathrm{a-C_{10}} & \mathrm{a-C_{23}} & \mathrm{a-C_{23}} \\ \mathrm{a-C_{12}} & \mathrm{a-C_{23}} & \mathrm{a-C_{23}} \\ \mathrm{a-C_{23}} \mathrm{a-C_{23}} & a-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} cyclo \mathrm{Heptyl} & \dots & 191 \\ -192 & 81\cdot 1 & 6\cdot 6 & 12\cdot 0 & - & C_{31}\mathrm{H}_{30}\mathrm{N}_{4} & 7 & 6\cdot 5 & 6\cdot 12\cdot 2 \\ \mathrm{CH}_{2} \cdot \mathrm{OH} & \dots & 154 \\ -156 & 76\cdot 5 & 5\cdot 3 & 13\cdot 9 & - & C_{25}\mathrm{H}_{20}\mathrm{ON}_{4} & 76\cdot 5 & 5\cdot 1 & 14\cdot 3 & - \\ \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH} & \dots & 179 \\ -180 & 76\cdot 6 & 5\cdot 3 & 14\cdot 0 & - & C_{26}\mathrm{H}_{20}\mathrm{ON}_{4} & 76\cdot 5 & 5\cdot 1 & 14\cdot 3 & - \\ \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NEt}_{2} & \dots & 137 \\ -180 & 77\cdot 0 & 6\cdot 7 & 14\cdot 4 & - & C_{30}\mathrm{H}_{21}\mathrm{N}_{5} & 7 & 7\cdot 0 & 6\cdot 9 & 14\cdot 3 & - \\ \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NEt}_{2} & \dots & 137 \\ -139 & 77\cdot 0 & 6\cdot 7 & 14\cdot 4 & - & C_{30}\mathrm{H}_{21}\mathrm{N}_{5} & 7 & 7\cdot 0 & 6\cdot 9 & 14\cdot 3 & - \\ \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\mathrm{Ph} & \dots & 166 \\ -168 & 82\cdot 2 & 5\cdot 6 & 12\cdot 1 & - & C_{32}\mathrm{H}_{26}\mathrm{N}_{4} & 82\cdot 4 & 5\cdot 6 & 12\cdot 0 & - \\ p^{-}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CI} & \dots & 235 \\ -237 & 76\cdot 0 & 4\cdot 4 & 11\cdot 6 & 7\cdot 8 & C_{30}\mathrm{H}_{21}\mathrm{N}_{4}\mathrm{CI} & 76\cdot 2 & 4\cdot 4 & 11\cdot 9 & 7\cdot 5 \\ \hline \\ Compounds where \mathrm{R} = p^{-}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CI} & & & & & & & \\ \mathrm{Me} & \dots & 224 \\ -225 & 66\cdot 8 & 4\cdot 1 & 12\cdot 1 & 15\cdot 8 & C_{25}\mathrm{H}_{18}\mathrm{N}_{4}\mathrm{Cl}_{2} & 67\cdot 4 & 4\cdot 0 & 12\cdot 6 & 16\cdot 0 \\ \mathrm{Et} & 193 \\ -193 \\ -193 \\ -195 & 68\cdot 0 & 4\cdot 5 & 12\cdot 0 & 15\cdot 4 & C_{26}\mathrm{H}_{20}\mathrm{N}_{4}\mathrm{Cl}_{2} & 68\cdot 5 & 4\cdot 7 & 11\cdot 8 & 15\cdot 0 \\ \mathrm{Bu}^{n} & \dots & 182 \\ -184 & 68\cdot 3 & 4\cdot 8 & 11\cdot 4 & 14\cdot 5 & C_{28}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{Cl}_{2} \\ \mathrm{Bu}^{n} & 183 \\ -185 & 68\cdot 9 & 5\cdot 1 & 11\cdot 7 & - & C_{28}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{Cl}_{2} \\ \mathrm{Bu}^{n} & 199 \\ -201 & 69\cdot 1 & 5\cdot 1 & 11\cdot 7 & - & C_{28}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{Cl}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{13} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & \mathrm{H}_{2} \\ \mathrm{H}_{2} & $
$ \begin{array}{c} \text{CH}_{2}\text{CM}_{2}\text{CM}_{1} & \text{if} 1 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \mathrm{CH}_2\mathrm{\cdot}\mathrm{CH}_2\mathrm{Ph} & \dots & 166 - 168 & 82\cdot 2 & 5\cdot 6 & 12\cdot 1 & - & \mathrm{C}_{32}\mathrm{H}_{26}\mathrm{N}_4 & 82\cdot 4 & 5\cdot 6 & 12\cdot 0 & - \\ p\cdot\mathrm{C}_6\mathrm{H}_4\mathrm{Cl} & \dots & 235 - 237 & 7\cdot 0 & 4\cdot 4 & 11\cdot 6 & 7\cdot 8 & \mathrm{C}_{30}\mathrm{H}_{21}\mathrm{N}_4\mathrm{Cl} & 7\cdot 6\cdot 2 & 4\cdot 4 & 11\cdot 9 & 7\cdot 5 \\ \hline \\ Compounds \ where \ \mathrm{R} = p\cdot\mathrm{C}_6\mathrm{H}_4\mathrm{Cl} & & & & & & & & & & & & & & & & & & &$
$\begin{array}{c} p-C_6H_4Cl \qquad \qquad 235-237 76\cdot 0 4\cdot 4 11\cdot 6 7\cdot 8 C_{30}^{2}H_{2}^{0}N_4Cl 76\cdot 2 4\cdot 4 11\cdot 9 7\cdot 5 \\ \hline Compounds \ where \ R = \ p-C_6H_4Cl. \\ Me \qquad \qquad \qquad 224-225 66\cdot 8 4\cdot 1 12\cdot 1 15\cdot 8 C_{25}H_{18}N_4Cl_2 67\cdot 4 4\cdot 0 12\cdot 6 16\cdot 0 \\ Et \qquad \qquad 193-195 68\cdot 0 4\cdot 5 12\cdot 0 15\cdot 4 C_{26}H_{20}N_4Cl_2 68\cdot 0 4\cdot 4 12\cdot 2 15\cdot 5 \\ Pr^n \qquad \qquad 200-201 68\cdot 4 4\cdot 7 11\cdot 9 15\cdot 0 C_{27}H_{22}N_4Cl_2 68\cdot 5 4\cdot 7 11\cdot 8 15\cdot 0 \\ Bu^n \qquad \qquad 182-184 68\cdot 3 4\cdot 8 11\cdot 4 14\cdot 5 C_{28}H_{24}N_4Cl_2 \\ Bu^s \qquad \qquad 199-201 69\cdot 1 5\cdot 1 11\cdot 7 - C_{28}H_{24}N_4Cl_2 \\ Bu^1 \qquad \qquad 183-185 68\cdot 9 5\cdot 1 11\cdot 2 14\cdot 1 C_{29}H_{26}N_4Cl_2 \\ Bu^1 \qquad \qquad 183-185 68\cdot 9 5\cdot 1 11\cdot 2 14\cdot 1 C_{29}H_{26}N_4Cl_2 \\ Hetta \ 183-185 68\cdot 9 5\cdot 1 11\cdot 2 14\cdot 1 C_{29}H_{26}N_4Cl_2 \\ CHEt_2 \qquad \qquad 215-217 69\cdot 6 5\cdot 4 11\cdot 3 13\cdot 9 C_{29}H_{26}N_4Cl_2 \\ CHEt_2 \qquad \qquad 173-175 69\cdot 7 5\cdot 5 11\cdot 0 13\cdot 9 C_{29}H_{26}N_4Cl_2 \\ n-C_6H_{13} \qquad \qquad 121-123 71\cdot 0 6\cdot 4 - 12\cdot 3 C_{30}H_{28}N_4Cl_2 69\cdot 9 5\cdot 4 10\cdot 9 13\cdot 8 \\ n-C_{10}H_{21} \qquad \qquad 121-123 71\cdot 0 6\cdot 4 - 12\cdot 3 C_{30}H_{28}N_4Cl_2 71\cdot 5 6\cdot 3 9\cdot 8 12\cdot 4 \\ n-C_{19}H_{25} \qquad \qquad 98-100 71\cdot 9 6\cdot 7 9\cdot 5 11\cdot 9 C_{34}H_{40}N_4Cl_2 72\cdot 1 6\cdot 7 9\cdot 3 11\cdot 9 \\ 4\cdot Methy cyclohexy \qquad \qquad 237-239 70\cdot 6 5\cdot 5 10\cdot 6 13\cdot 2 C_{31}H_{28}N_4Cl_2 70\cdot 6 5\cdot 3 10\cdot 6 13\cdot 5 \\ \end{array}$
$\begin{array}{c} Compounds \ where \ \mathbf{R} = p - \mathbf{C_6H_4Cl.} \\ \mbox{Me} & 224 - 225 & 66 \cdot 8 & 4 \cdot 1 & 12 \cdot 1 & 15 \cdot 8 & \mathbf{C_{25}H_{18}N_4Cl_2} & 67 \cdot 4 & 4 \cdot 0 & 12 \cdot 6 & 16 \cdot 0 \\ \mbox{Et} & 193 - 195 & 68 \cdot 0 & 4 \cdot 5 & 12 \cdot 0 & 15 \cdot 4 & \mathbf{C_{26}H_{20}N_4Cl_2} & 68 \cdot 0 & 4 \cdot 4 & 12 \cdot 2 & 15 \cdot 5 \\ \mbox{Pr}^n & 200 - 201 & 68 \cdot 4 & 4 \cdot 7 & 11 \cdot 9 & 15 \cdot 0 & \mathbf{C_{27}H_{22}N_4Cl_2} & 68 \cdot 5 & 4 \cdot 7 & 11 \cdot 8 & 15 \cdot 0 \\ \mbox{Bu}^n & 182 - 184 & 68 \cdot 3 & 4 \cdot 8 & 11 \cdot 4 & 14 \cdot 5 & \mathbf{C_{28}H_{24}N_4Cl_2} \\ \mbox{Bu}^n & 182 - 184 & 68 \cdot 3 & 4 \cdot 8 & 11 \cdot 4 & 14 \cdot 5 & \mathbf{C_{28}H_{24}N_4Cl_2} \\ \mbox{Bu}^n & 183 - 185 & 68 \cdot 9 & 51 & 11 \cdot 7 & - & \mathbf{C_{28}H_{24}N_4Cl_2} \\ \mbox{Bu}^n & 183 - 185 & 68 \cdot 9 & 51 & 11 \cdot 6 & 14 \cdot 7 & \mathbf{C_{28}H_{24}N_4Cl_2} \\ \mbox{C_{5}H_{11}} & 183 - 185 & 68 \cdot 9 & 51 & 11 \cdot 2 & 14 \cdot 1 & \mathbf{C_{29}H_{26}N_4Cl_2} \\ \mbox{CHEt}_2 & 215 - 217 & 69 \cdot 6 & 5 \cdot 4 & 11 \cdot 3 & 13 \cdot 9 & \mathbf{C_{29}H_{26}N_4Cl_2} \\ \mbox{C-6}H_{13} & & 173 - 175 & 69 \cdot 7 & 5 \cdot 5 & 11 \cdot 0 & 13 \cdot 9 & \mathbf{C_{29}H_{26}N_4Cl_2} \\ \mbox{a} - \mathbf{C_{10}H_{21}} & 121 - 123 & 71 \cdot 0 & 6 \cdot 4 & - & 12 \cdot 3 & \mathbf{C_{30}H_{28}N_4Cl_2} & 69 \cdot 9 & 5 \cdot 4 & 10 \cdot 9 & 13 \cdot 8 \\ \mbox{a} - \mathbf{C_{19}H_{25}} & & 98 - 100 & 71 \cdot 9 & 6 \cdot 7 & 9 \cdot 5 & 11 \cdot 9 & \mathbf{C_{30}H_{26}N_4Cl_2} & 71 \cdot 5 & 6 \cdot 3 & 9 \cdot 8 & 12 \cdot 4 \\ \mbox{a} - \mathbf{C_{19}H_{25}} & & 98 - 100 & 71 \cdot 9 & 6 \cdot 7 & 9 \cdot 5 & 11 \cdot 9 & \mathbf{C_{30}H_{28}N_4Cl_2} & 70 \cdot 6 & 5 \cdot 3 & 10 \cdot 6 & 13 \cdot 5 \\ \mbox{a} - \mathbf{M_{11}H_{22}} & & 237 - 239 & 70 \cdot 6 & 5 \cdot 5 & 10 \cdot 6 & 13 \cdot 2 & \mathbf{C_{31}H_{28}N_4Cl_2} & 70 \cdot 6 & 5 \cdot 3 & 10 \cdot 6 & 13 \cdot 5 \\ \mbox{a} - \mathbf{M_{11}H_{22}} & & \mathbf{M_{11}H_{22}} & \mathbf{M_{11}H_{22}} & \mathbf{M_{11}H_{22}} & \mathbf{M_{12}} & \mathbf$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4-Methylcyclohexyl 237–239 70.6 5.5 10.6 $13.2 C_{31}H_{28}N_4Cl_2$ 70.6 5.3 10.6 13.5
$3: 5$ -Diméthyl <i>cyclo</i> hexyl 218—220 70.4 5.8 10.5 13.2 $C_{32}H_{30}^{*}N_4Cl_2^*$ 71.0 5.5 10.4 13.1
$CH_2 \cdot CH_2 \cdot OH$ 207–208 65.6 4.4 12.0 14.8 $C_{24}H_{20}ON_4Cl_2 65.7$ 4.2 11.8 14.9
$CH_2 \cdot CH_2 \cdot NEt_2 \dots 158 - 160 67 \cdot 4 5 \cdot 3 13 \cdot 2 13 \cdot 4 C_{30} \cdot H_{29} \cdot N_5 \cdot Cl_2 67 \cdot 9 5 \cdot 5 13 \cdot 2 13 \cdot 4 C_{30} \cdot H_{29} \cdot N_5 \cdot Cl_2 67 \cdot 9 5 \cdot 5 13 \cdot 2 13 \cdot 4 Cl_{30} \cdot H_{30} \cdot H_{30}$
$p - C_{a}H_{4}CI$
Compound where $R = o - C_6 H_4 Cl$.
$\Pr^{I} \dots \dots 193 - 195 68.0 4.5 11.8 15.2 C_{27}H_{22}N_4Cl_2 68.5 4.7 11.8 15.0$
Compound where $R = p - C_{g} H_{4}$. OMe.
$p - C_6 H_4 \cdot OMe \dots 219 - 221 75 \cdot 3 5 \cdot 4 10 \cdot 7 - C_{33} H_{28} O_3 N_4 75 \cdot 0 5 \cdot 3 10 \cdot 6 - - - - - - - - - $
* All the compounds in this Table were recrystallised from ethanol. \dagger Solvate, $\pm \frac{1}{2}C_2H_5$ ·OH.

* All the compounds in this Table were recrystallised from ethanol. \dagger Solvate, $+\frac{1}{2}C_{2}H_{5}$ ·OH. The following ten compounds (III) have already been characterised (Table 2, Part IV ¹) but were formulated incorrectly: (III; R = Ph, and R''' = Pr⁴, Bu⁸, CHEt₂, CHMeBu⁴, cyclohexyl or, CHMe·[CH₂]₂·OH); (III; R = p-C₆H₄Cl, and R''' = Pr⁴ or cyclohexyl); (III; R = p-C₆H₄Me, R''' = Pr⁴); (III; R = p-C₆H₄·OPr⁴, R''' = cyclohexyl).

TABLE 3.

		Found (%)					Required (%)			
$\mathbf{R'} = \mathbf{R''}$	M. p.*	С	н	N	Cl	Formula	С	Ĥ	N	C1
Compounds (VIII; R	= Me).									
Ph		79.5	$5 \cdot 6$			$C_{25}H_{20}N_{4}$	79.8	$5 \cdot 3$	14.9	
<i>p</i> -C ₆ H ₄ Cl	. 245 - 246	67.3	4 ·1	12.6	16.0	$C_{25}H_{18}N_4Cl_2$	67.4	$4 \cdot 0$	12.6	16.0
Compounds (VIII; R	Compounds (VIII; $R = CH_2 \cdot CH_2 \cdot NEt_2$).									
Ph		78.2	6.9	15.3		$C_{30}H_{31}N_{4}$	$78 \cdot 1$	6.7	15.2	
<i>p</i> -C ₆ H ₄ Cl	. 168 - 169	67.8	5.5	13.4	13.6	$C_{30}H_{29}N_4Cl_2$	67.9	$5 \cdot 5$	13.2	13.4
Compounds (VIII; $R = cyclohexyl)$.										
Ph	. 185—186			12.7		$C_{30}H_{28}N_{4}$	81 ·1	$6 \cdot 3$	12.6	
<i>p</i> -C ₆ H ₄ Cl	. 198	$70 \cdot 2$	5.4	10.7	13.9	$C_{30}H_{26}N_4Cl_2$	70.1	$5 \cdot 1$	10.9	13.8
Compound (VIII; R	$= p - C_6 H_4 Cl).$									
Ph	. 205–206	75.8	4.5	12.3	7.8	$C_{30}H_{21}N_4Cl$	76.2	4.4	11.9	7.5
* All compounds recrystallised from ethanol										

* All compounds recrystallised from ethanol.

yield, but with p-chloroaniline a mixture similar to that described above was obtained. Again, treatment of compound (V; $R = p-C_6H_4Cl$) with aniline gave a mixture of monoand di-chlorinated derivatives of sharp m. p., and not separable on alumina. When p-chloroaniline was used instead of aniline in this reaction, a single trichlorinated compound (III; $R = R''' = p-C_6H_4Cl$) resulted. It is clear, therefore, that compounds of structure (III) may be readily obtained in a pure state from structures (IV and V) when the reacting arylamine is the same as that already substituting in the 2- or 3-position of the phenazine nucleus.

The amine (V; R = Ph) does not react with alkyl- or *cyclo*alkyl-amines under reflux. At higher temperatures *cyclo*hexylamine reacts with compound (V; R = Ph), yielding compound (VIII; R = Ph, R' = R'' = cyclohexyl). A similar result was obtained with the analogue (V; $R = p-C_6H_4Cl$).

Condensation of o-phenylenediamines and 4:5-diarylamino-o-quinones yields compounds of structure (VIII; R' = R'' = aryl, R = aryl, alkyl, *cycloalkyl*, etc.) which, when R differs from R', are not accessible by any of the other routes described. In the preparation of the 4:5-diarylamino-o-quinones we have found sodium iodate to be a much more effective reagent than silver oxide.³

New glyoxalinophenazines are listed in Table 1 and the substituted imines in Tables 2 and 3. A preliminary account of the biological properties of these substituted imines has already been published.⁴

Experimental

2-Anilino-3: 5-dihydro-3-methylimino-5-phenylphenazine.—(a) With methylamine. Anilinoaposafranine hydrochloride (4.0 g.) and 40% aqueous methylamine (20 c.c.) in ethanol (25 c.c.) were heated in a sealed tube at 130° for 3 hr. The dark red solid, recrystallised from ethanol (2.7 g.), had m. p. 180—181° (Found: C, 79.4; H, 5.5; N, 14.6. $C_{25}H_{20}N_4$ requires C, 79.8; H, 5.3; N, 14.9%). This compound has also been obtained, with m. p. 188—190°, from benzene. Its solution in concentrated sulphuric acid is petunia-purple, unchanged on dilution.

(b) With methyl sulphate. Anilinoaposafranine (0.7 g.), methyl sulphate (0.7 c.c.), and 10% aqueous sodium hydroxide (3 c.c.) were heated under reflux in acetone (20 c.c.) for 4 hr. The solvent was removed and the product purified chromatographically in benzene on alumina. The product (0.3 g.) was identical with that obtained by method (a).

2-Anilino-3: 5-dihydro-3-hydroxymethylimino-5-phenylphenazine.—Anilinoaposafranine (0.6 g.), paraformaldehyde (1.6 g.), and ethanol (80 c.c.) were boiled for 3 min. The filtrate yielded orange yellow crystals (0.3 g.), m. p. 154—156° (from benzene) (Found: C, 76.5; H, 5.3; N, 13.9. $C_{25}H_{20}ON_4$ requires C, 76.5; H, 5.1; N, 14.3%).

2-Anilino-3: 5-dihydro-5-phenyl-3-phenyliminophenazine.—This compound ³ was prepared by heating the hydrochloride of each of the following with aniline under reflux for 10 min.: (a) anilinoaposafranine, (b) 2-amino-3: 5-dihydro-5-phenyl-3-phenyliminophenazine, (c) 5: 2'dihydro-2': 2'-dimethyl-5: 1'-diphenylglyoxalino(5': 4'-2: 3)phenazine, (d) 2-anilino-3-cyclohexylimino-3: 5-dihydro-5-phenylphenazine. The cooled solutions were poured into ether and the precipitated salt converted into the base in each case. After chromatographic purification the product had m. p. 235—237° (from benzene). Yields were: from (a) and (b), 80%; from (c) and (d), 40%. The same compound was prepared by the condensation of 2-aminodiphenylamine hydrochloride and 4: 5-dianilino-o-quinone.

4: 5-Di-p-chloroanilino-o-quinone.—Catechol (4.4 g.) and p-chloroaniline (10.2 g.) were dissolved in ethanol (150 c.c.), and sodium iodate (8.0 g.) in water (150 c.c.) added. The mixture was stirred for 2 hr., then kept overnight; the dark red quinone (14.4 g.) which separated had m. p. 222—224° (from chloroform) (Found: C, 60.5; H, 3.4; N, 8.0; Cl, 20.0. $C_{18}H_{12}O_2N_2Cl_2$ requires C, 60.2; H, 3.3; N, 7.8; Cl, 19.8%).

4:5-Di-p-toluidino-o-quinone.—Prepared as above, this quinone formed bright red needles, m. p. 190—192°, from benzene (Found: C, 75·7; H, 5·7; N, 9·0. $C_{20}H_{18}O_2N_2$ requires C, 75·5; H, 5·7; N, 8·8%). The yield was theoretical.

2-p-Chloroanilino-3-p-chlorophenylimino-3: 5-dihydro-5-phenylphenazine.—4: 5-Di-p-chloroanilino-o-quinone (3.6 g.) and N-phenyl-o-phenylenediamine hydrochloride (2.2 g.) were heated

⁴ Barry, Belton, Conalty. Denneny, Edward, O'Sullivan, Twomey, and Winder, Nature, 1957, **179**, 1013.

in ethanol (150 c.c.) under reflux for 1 hr. The mixture was made alkaline with ammonia and diluted with water. The *product* (2·3 g.) after chromatographic purification was obtained as dark red needles (from benzene), m. p. 241–242° (Found: C, 71·3; H, 3·7; N, 10·8; Cl, 14·0. $C_{30}H_{20}N_4Cl_2$ requires C, 71·0; H, 3·9; N, 11·0; Cl, 14·0%).

2-cycloHexylamino-3-cyclohexylimino-3: 5-dihydro-5-phenylphenazine.—2-Amino-3: 5-dihydro-5-phenyl-3-phenyliminophenazine hydrochloride (3.0 g.) and cyclohexylamine (35 c.c.) were heated in the autoclave at 185° for 1 hr. Unchanged cyclohexylamine was removed by steam-distillation and the residual solid purified chromatographically on alumina. The compound (1.8 g.) was an orange powder, m. p. 188—190° (from ethanol) (Found: C, 79.9; H, 7.6; N, 12.8. $C_{30}H_{34}N_4$ requires C, 80.0; H, 7.6; N, 12.4%).

5-p-Chlorophenyl-2-cyclohexylamino-3-cyclohexylimino-3: 5-dihydrophenazine.—2-Amino-5p-chlorophenyl-3-p-chlorophenylimino-3: 5-dihydrophenazine was treated with cyclohexylamine as in the previous experiment. The product was a brown-red powder, m. p. 196—198° (from ethanol) (Found: C, 73.8; H, 6.5; N, 11.5. $C_{30}H_{33}N_4Cl$ requires C, 74.3; H, 6.8; N, 11.6%).

2 - p - Chloroanilino-5-p-chlorophenyl-3: 5-dihydro-3-isopropyliminophenazine.--2-p-Chloroanilino-5-p-chlorophenyl-3: 5-dihydro-3-iminophenazine hydrochloride (2.0 g.), isopropylamine(20 c.c.), and ethanol (40 c.c.) were heated for 2 hr. in the autoclave at 80°. The product,purified chromatographically, was identical with that obtained by catalytic hydrogenation of<math>5 : 1'-di-p-chlorophenyl-5 : 2'-dihydro-2' : 2'-dimethylglyoxalino(5' : 4'-2 : 3)phenazine.

2-p- $\hat{C}hloroanilino-5$ -p-chlorophenyl-3- cyclohexylimino-3: 5-dihydrophenazine.—2-p-Chloroanilino-5-p-chlorophenyl-3: 5-dihydro-3-iminophenazine hydrochloride (0·2 g.) was heated under reflux with cyclohexylamine (15 c.c.) for 30 min. The product (0·15 g.), purified chromatographically, was identical with that obtained by catalytic hydrogenation of 5: 1'-di-p-chlorophenylcyclohexanespiro-2'-glyoxalino(5': 4'-2: 3)phenazine.

Recyclisation of Compound (III; R = Ph, $R'' = Pr^i$) to the Glyoxalinophenazine (I; R = Ph, R' = R'' = Me).—The compound (III) (0.5 g.), concentrated hydrochloric acid (0.25 c.c.), and nitrobenzene (25 c.c.) were heated under reflux for 20 min. The cooled solution was poured into ether and the precipitated hydrochloride converted into the base which was purified chromatographically; this had m. p. and mixed m. p. 230—232° (yield, 0.07 g.). The compound in concentrated sulphuric acid is rose-red, unchanged on dilution.

The authors are grateful to J. R. Geigy, S.A., Basle, Switzerland, for financial aid.

LABORATORIES OF THE MEDICAL RESEARCH COUNCIL OF IRELAND,

[Received, September 24th, 1957.]

TRINITY COLLEGE, DUBLIN.